Best Interview Questions and Answers of Data Communication and Computer Networks

Data Communication and Computer Networks Viva Questions & Answer

 

1.What is Data Communication?

Data Communication and Computer Networks in which Data Communication means the exchange of data between two devices via some form of transmission medium such as a wire cable.

For data communications to occur, the communicating devices must be part of a communication system made up of a combination of hardware (physical equipment) and software (programs).

2. What are the Characteristics of Data Communications?

The effectiveness of a Data Communication and Computer Networks system depends on four fundamental characteristics: delivery, accuracy, timeliness, and jitter.

  • Delivery: The system must deliver data to the correct destination. Data must be received by the intended device or user and only by that device or user.
  • Accuracy: The system must deliver the data accurately. Data that have been altered in transmission and left uncorrected are unusable.
  • Timeliness: The system must deliver data in a timely manner. Data delivered late are useless. In the case of video and audio, timely delivery means delivering data as they are produced, in the same order that they are produced, and without significant delay. This kind of delivery is called real-time transmission.
  • 4. Jitter: Jitter refers to the variation in the packet arrival time. It is the uneven delay in the delivery of audio or video packets. For example, let us assume that video packets are sent every 3D ms. If some of the packets arrive with 3D-ms delay and others with 4D-ms delay, an uneven quality in the video is the result.

.3. What are the Components of Data Communication?

The different components of Data communication are shown in the following figure.

  • Message: The message is the information (data) to be communicated. Popular forms of information include text, numbers, pictures, audio, and video.
  • Sender: The sender is the device that sends the data message. It can be a computer, workstation, telephone handset, video camera, and so on.
  • Receiver: The receiver is the device that receives the message. It can be a computer, workstation, telephone handset, television, and so on.
  • Transmission medium: The transmission medium is the physical path by which a message travels from sender to receiver. Some examples of transmission media include twisted-pair wire, coaxial cable, fiber-optic cable, and radio waves.
  • Protocol: A protocol is a set of rules that govern data communications. It represents an agreement between the communicating devices. Without a protocol, two devices may be connected but not communicating, just as a person speaking French cannot be understood by a person who speaks only Japanese.

4. What are Different Data Flow Directions?

Communication between any two devices can be simplex, half-duplex, or full-duplex.

  • Simplex: In simplex mode, the communication is unidirectional, as on a one-way street. Only one of the two devices on a link can transmit; the other can only receive which can be represented in the following figure. Keyboards and traditional monitors are examples of simplex devices. The keyboard can only introduce input; the monitor can only accept output. The simplex mode can use the entire capacity of the channel to send data in one direction.

Data Communication and Computer Networks Simplex

  • Half-Duplex: In half-duplex mode, each station can both transmit and receive, but not at the same time. When one device is sending, the other can only receive, and vice versa which will represent in the following figure.

Data Communication and Computer Networks Half Duplex

The half-duplex mode is like a one-lane road with traffic allowed in both directions. When cars are traveling in one direction, cars going the other way must wait. In a half-duplex transmission, the entire capacity of a channel is taken over by whichever of the two devices is transmitting at the time. Walkie-talkies and CB (citizens band) radios are both half-duplex systems.

The half-duplex mode is used in cases where there is no need for communication in both directions at the same time; the entire capacity of the channel can be utilized for each direction.

  • Full-Duplex: In full-duplex mode (also called duplex), both stations can transmit and receive simultaneously as shown in the following figure.The full-duplex mode is like a two-way street with traffic flowing in both directions at the same time. In full-duplex mode, signals going in one direction share the capacity of the link: with signals going in the other direction. This sharing can occur in two ways: Either the link must contain two physically separate transmission paths, one for sending and the other for receiving; or the capacity of the channel is divided between the signals traveling in both directions

 

Data Communication and Computer Networks.

One common example of full-duplex communication is the telephone network. When two people are communicating by a telephone line, both can talk and listen at the same time. The full-duplex mode is used when communication in both directions is required all the time. The capacity of the channel, however, must be divided between the two directions.

5. Different Types of Connections

A network is two or more devices connected through links. A link is a communications pathway that transfers data from one device to another. For communication to occur, two devices must be connected in some way to the same link at the same time.

There are two possible types of connections: point-to-point and multipoint.

  • Point-to-Point: A point-to-point connection provides a dedicated link between two devices. The entire capacity of the link is reserved for transmission between those two devices. Most point-to-point connections use an actual length of wire or cable to connect the two ends, but other options, such as microwave or satellite links, are also possible which are shown in the following figure.

Data Communication and Computer Networks

 

  • 2.Multipoint: A multipoint (also called multidrop) connection is one in which more than two specific devices share a single link as shown in the following figure.

Data Communication and Computer Networks

In a multipoint environment, the capacity of the channel is shared, either spatially or temporally. If several devices can use the link simultaneously, it is a spatially shared connection. If users must take turns, it is a timeshared connection.

6. Explain Types of Networks

Network category is determined by its size, ownership, the distance it cover and its physical architecture. The types of networks are local-area networks and wide- area networks. The category into which a network falls is determined by its size. A LAN normally covers an area less than 2 miles, a WAN can be worldwide. Networks of a size in between are normally referred to as metropolitan area networks and span tens of miles.

  • Local Area Network: A Local Area Network (LAN) is usually privately owned and links the devices in a single office, building, or campus (see Figure 1.10). Depending on the needs of an organization and the type of technology used, a LAN can be as simple as two PCs and a printer in someone's home office; or it can extend throughout a company and include audio and video peripherals. Currently, LAN size is limited to a few kilometers.

Data Communication and Computer NetworksLANs are designed to allow resources to be shared between personal computers or workstations. The resources to be shared can include hardware (e.g., a printer), software (e.g., an application program), or data.

  • Wide Area Network: A Wide Area Network (WAN) provides long-distance transmission of data, image, audio, and video information over large geographic areas that may comprise a country, a continent, or even the whole world. A WAN can be as complex as the backbones that connect the Internet or as simple as a dial-up line that connects a home computer to the Internet.

Data Communication and Computer Networks

  • Metropolitan Area Network: A Metropolitan Area Network (MAN) is a network with a size between a LAN and a WAN. It normally covers the area inside a town or a city. It is designed for customers who need a high-speed connectivity, normally to the Internet, and have endpoints spread over a city or part of city. A good example of a MAN is the part of the telephone company network that can provide a high-speed DSL line to the customer.

Data Communication and Computer Networks

7. Explain Types of Topologies

The term physical topology refers to the way in which a network is laid out physically.

Two or more devices connect to a link; two or more links form a topology. The topology of a network is the geometric representation of the relationship of all the links and linking devices (usually called nodes) to one another.

There are four basic topologies possible: mesh, star, bus, and ring which are shown in the following figure.

  1. Mesh Topology: In a mesh topology, every device has a dedicated point-to-point link to every other device. The dedicated link carries traffic only between the two devices it connects. The number of physical links needed in a fully connected mesh network with n nodes are, n(n - 1). However, if each physical link allows communication in both directions (duplex mode), we can divide the number of links by 2. In other words, we can say that in a mesh topology, we need n(n -1) /2 duplex-mode links. To accommodate that many links, every device on the network must have n – 1 input/output (I/O) ports to be connected to the other n - 1 stations which are shown in the following figure:

Data Communication and Computer Networks

       Advantages of Mesh Topology:

  • The dedicated links guarantees that each connection can carry its own data load, thus eliminating the traffic problems that can occur when links must be shared by multiple devices.
  • A mesh topology is robust. If one link becomes unusable, it does not incapacitate the entire system.
  • Another advantage of Mesh topology is advantage of privacy or security. When every message travels along a dedicated line, only the intended recipient sees it. Physical boundaries prevent other users from gaining access to messages.
  • point-to-point links make fault identification and fault isolation easy. Traffic can be routed to avoid links with suspected problems. This helps to discover the precise location of the fault and aids in finding its cause and solution.

Disadvantages of Mesh Topology:

  • Every device must be connected to every other device. So large amount of cabling and the number of I/O ports are required. So, the installation and reconnection are difficult.
  • The sheer bulk of the wiring can be greater than the available space (in walls, ceilings, or floors) can accommodate.
  • The hardware required to connect each link (I/O ports and cable) can be prohibitively expensive.

        2. Star Topology:

In a star topology, each device has a dedicated point-to-point link only to a central controller, usually called a hub. The devices are not directly linked to one another. Unlike a mesh topology, a star topology does not allow direct traffic between devices. The controller acts as an exchange: If one device wants to send data to another, it sends the data to the controller, which then relays the data to the other connected device as shown in the following Figure.

Data Communication and Computer Networks

  • Advantages of Star Topology: A star topology is less expensive than a mesh topology. In a star, each device needs only one link and one I/O port to connect it to any number of others.
  • A star topology is robust. i.e If one link fails, only that link is affected. All other links remain active. This factor also lends itself to easy fault identification and fault isolation.
  • Disadvantages Star Topology: One big disadvantage of a star topology is the dependency of the whole topology on one single point, the hub. If the hub goes down, the whole system is dead.
  • Although a star requires far less cable than a mesh, each node must be linked to a central hub. For this reason, often more cabling is required in a star than in some other topologies (such as ring or bus).

        3. Bus Topology: The preceding examples all describe point-to-point connections. A bus topology, on the other hand, is multipoint. One long cable acts as a backbone to link all the devices in a network which is shown in the following figure.

Data Communication and Computer Networks

Nodes are connected to the bus cable by drop lines and taps. A drop line is a connection running between the device and the main cable. A tap is a connector that either splices into the main cable or punctures the sheathing of a cable to create a contact with the metallic core. As a signal travels along the backbone, some of its energy is transformed into heat. Therefore, it becomes weaker and weaker as it travels farther and farther. For this reason there is a limit on the number of taps a bus can support and on the distance between those taps.

  • Advantages of Bus Topology: The main advantages of a bus topology is ease of installation. Backbone cable can be laid along the most efficient path, then connected to the nodes by drop lines of various lengths.

Disadvantages of Bus Topology:

  • The disadvantage of bus topology is difficult reconnection and fault isolation. A bus is usually designed to be optimally efficient at installation. It can therefore be difficult to add new devices. Signal reflection at the taps can cause degradation in quality.
  • A fault or break in the bus cable stops all transmission, even between devices on the same side of the problem. The damaged area reflects signals back in the direction of origin, creating noise in both directions

       4. Ring Topology:

In a ring topology, each device has a dedicated point-to-point connection with only the two devices on either side of it. A signal is passed along the ring in one direction, from device to device, until it reaches its destination. Each device in the ring incorporates a repeater. When a device receives a signal intended for another device, its repeater regenerates the bits and passes them along. A typical ring topology is as shown in the figure.

Data Communication and Computer Networks

Advantages of Ring Topology:

  • A ring is relatively easy to install and reconfigure. Each device is linked to only its immediate neighbors (either physically or logically). To add or delete a device requires changing only two connections.
  • A signal is circulating at all times (token) if one device does not receive a signal within specified period, it can issue an alarm. The alarm alerts the network operator to the problem and its location

Disadvantages of Ring Topology:

  • The main disadvantage of ring topology is unidirectional traffic can be a disadvantage. In a simple ring, a break in the ring (such as a disabled station) can disable the entire network.

      5. Hybrid Topology:

A network can be hybrid. For example, we can have a main star topology with each branch connecting several stations in a bus topology as shown in the following figure.

Data Communication and Computer Networks

If one link fails, only that link is affected. All other links remain active. This factor also lends itself to easy fault identification and fault isolation.

Read More: Data Communication and Computer Networks Questions & Answer

Read More: Notes of Data Communication and Computer Networks

Read More: Different Types in Data Communication and Computer Networks

Read More: Different Types of Topology in Data Communication and Computer Networks

Follow Us: Facebook, Twitter, Instagram